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CRACK TIP FIELDS FOR FAST FRACTURE
OF AN ELASTIC-PLASTIC MATERIAL

by

J. D. Achenbach, M. F. Kanninen, and C. H. Popelar

INTRODUCTION

An expanding interest is developing in the analysis of rapid
unstable crack propagation in vhich dynamic (inertia) effects may not be
negligible. While this interest has been motivated in part by intellectual
curiosity in a nev and fertile applied mechanics research area, there is
also a growing realization that many engineering applications for this
technology exist. There are many practical situations in which the result
of large scale unstable crack growth is completely unacceptable. To pre-
clude such catastropic occurrences, it is important to develop treatments
for the arrest of rapid crack propagation. Because crack arrest must
logically be viewed as the termination of fast fracture, attention must
be focused on the dynamic crack propagation process.

Por the most part, dynamic fracture mechanics is now based upon
elastodynamic solutions; for example, see Kanninen (1978). Yet, most struc-
tural components where fracture is a concern employ tough ductile materials
where it 18 unlikely that the basic assumptions of linear elastic fracture
mechanics (LEFM) are valid. 1In addition, recent work has begun to raise
serious questions about the extent to which the dynamic fracture toughness
is truly a material property, even when LEFM conditions are satisfied.
Thus, it is necessary to develop nonlinear dynamic elastic-plastic frac-

ture mechanics treatments.
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Because unloading may take place in dynamic crack propagation,
a deformation theory formulation is undesirable. A flow theory

approach is required to account for the elastic unloading in the wake of
the crack tip. An asymptotic solution near the tip of a crack propagating
dynamically in antiplane strain (Mode III) conditions using such an approach
has already been given by Achenbach and Kanninen (1978). Their results
determined the form of the crack tip singularity and the angular position

at wvhich elastic unloading commences. Clearly, this kind of information

is needed in order to devise a finite element or other solution procedure
for dynamic crack propagation and arrest analyses.

The work described in this paper extends the Achenbach-Ranninen
approach to Mode I crack growth. Results for both plane stress and plane
strain conditions are given. These solutions are based upon Jz flow theory
with a bilinear stress-strain relation which allows elastic unloading.

The problem formulation leads to a nonlinear eigemnvalue problem which is
solved using an iterative numerical solution procedure. Confidence in
the results was attained by comparisons with the results obtained by
Amazigo and Hutchison (1977) for the special case of quasi-static crack

growth at low crack-tip speeds when the dynamic effects are negligible.




. THE SOLUTION PROCEDURE
Problem Formulation

The fields of stress and deformation are referred to a coordinate
system whose origin is attached to the moving ecrack tip. The system of coor-
dinates is shown in Figure 1. The crack is located in the (3133)-plane vhere
the x5
advance. The relevant displacement components are ul(xl,xz,t) and uz(xl,xz,t),

axis coincides with the crack front and x, is the direction of crack °

where t is time.
In the following the material derivatives with respect to time will

frequently be needed. These are defined as

O =-vw 2 e}
1
2 2 2
.o ) . ] 3 29
€y =5 - 90 5o - () o+ vt 25 @
3t2 3x1 axla: axi

where v(t) is the speed of the crack tip. Notice that v need not be constant

and 18 only subject to the conditious that v(t) and dv/dt are continuous functions.

For the case of plane stress, the non-vanishing stress components are

%310 %912 ® 9930 and 999° The equations of motion are of the form

v8,6 = puY H Ys8 = 1,2 3)

vhere the second-order material time-derivative is defined by (2)*.

The constitutive equations in the elastic-plastic material take into

account strain-hardening characterized by J2 flow theory and a bilinear effective

#In the following, Greek minuscules have the values 1,2 whereas Latin minuscules
have the values 1,2,3.




stress~strain curve. This curve is shown in Figure 2. Let S, denote the
yield stress in tension, E Young's modulus, and a = zt/z. vhere E  is the
slope af the bilinear stress-strain relation in tension for stresses in excess

of % The effective stress is defined as

5 = G sy -“)1’ 2 )

vhere LT is the stress deviator. The constitutive relations for an elasti-
eally isotropic solid may then be written following Amazigo and Hutchinson
(1977): .

loading (g, 2 0):

B, gy = ol + )8, - vi,8,,] + (-g- o) (L - a)s 8, (5)
unloading (&e < 0):

Etéij = gl (1 + v)§

where v is Poisson's ratio.

Field Equations for a Near-Tip Analysis

In this paper, certain a-priori assumptions are made with respect to -
the general nature of the deformation in the {mmedfate vicinity of the crack tip.
Explicit expressions for the near-tip fields will be derived using these assump-
tions. It will then be shown that the required boundary and continuity condi-
tions are satisfied.

It 18 assumed that ahead of the crack tip a plastic loading zone

exists which is bounded in the near-tip region by radial lines emanating from




the crack tip at angles 8 -'fep. This is shown in Figure 1. An elastic unload-

ing zone is assumed for |e1 > Op. The possible presence of a plastic reloading

gone for |O| near ¥ is neglected in this paper. Conceptually, it is possible to
include such a reloading zone. But, just as for the quasi-static case investi-
gated by Amazigo and Hutchinson (1977), it is expected that the influence of re-
loading is not significant enough to justify the computational complications
that would be required to treat it.

In the plastic loading zone, asymptotic solutions near the crack tip

of the general form
& = KvU_(6) r° @)
Y Y
are sought. Here, K is an amplitude factor, while ﬁY(e) and s are to be deter-

mined. In an asymptotic analysis, only the lowest orders in r need to be re-

tained. This means that 3/3t can be neglected compared to -v(t)alaxl in (1).

Thus
)~ = V() 5o (8
1
By using the relations
) ) 8inb 3
ox; cos®3r = ~r 36 (9)
and
3 9 , cosé 3 (10)
Tx—z sing or + r o€

the strain rates corresponding to (7) are then computed as




&, = KV [s ) cose - U} sin8) 21 (11)
tzz =Kv [s flz cos® + ﬁi cosf] r.-l (12)

t -lxv[sﬁloine+fl

12 =3 ! cosO+ 8 sz cosd - Ui sin 6] r'-l €13)

1

where ( )' = d/d6. Also by definition

{o 45 0 sij} = K E {I;,(8), I (), sij(e')} r® (14)
and
° . . .-1
“13' 6e’ ‘131 =KEv {zij(e)' ze(e). Sij(ﬂ)} 4 €15)
By virtue of (8) and (9), the folloﬁing relation holds
i:lj = szij cos® + tij siné (16)
Analogous relations hold for f:e(e) and si.‘l (8). Also
S.. =%, - 1y 5 (17)
ij 13 3 "kk ij
3 1/2
L, = (3 s:l.j s:lj) (18)

By substituting (7) and the first of (14) into the equations of motion
(3), ve obtain in the plastic loading zone near the crack-tip
s tn cos d - 2i1 sin6+ s }:21 sin 6+ zil cog 0= 32 (-s ﬁl cos @ + ﬁ]'. 81in6) (19)
8 I,co88- L) sin@+ 5 I,, sin8+ L), cosd = 82 (-s

o cost + ‘I.Ji sin€) (20)

where

Bevic, c= @& . (21)




Substitution of (11) through (18) into the constitutive relations (5) and (6)

yields
u[-'ﬁl cos® - U] sin e] - a[(l-o-v) i, - vtu] +-§- (1-a) z;l 5, &, (22)
c[s I'Jz sinb + ﬁé cose] - cl(1+v) 222 - vikk] +% (1-a) z:l Soy ie (23)

- o' * - .' - .
u[s Ul 8inb + Ul cosd + 8 IJ2 cosf U2 sine] 2 a (1+v) 212

(24)

£

-1
+ 3 (1-a) !:e 212 e

The unknowns in these equations are UY and 576.

The above formulation was derived for plane stress conditions. For
the case of plane strain, we have the coandition é33 = 0 and the nonvanishing
stress ... It follows from (5) and (14) that; the additional relation required
for determining 233 is

¢

. - N 3 -1 -
c[(l-l-v) I33-v2kk]+-2-(1~u) :e S..Z_=0 (25)

No other changes are needed.

Corresponding equations for the elastic unloading region can be
obtained from the work of Achenbach and Bazant (1975). In the elastic region

the displacement rate must satisfy for plane strain the equation

o+ u)uy’,‘"s +ouig = pugtt (26)

where A and u are Lame's elastic constants. We introduce the displacement-rate

potentials ¢ and ¥ through

y




o = 2% 4 3% o =2 _ 3y 27)

H u -
1 ox sz 2 sz X3

It is then not difficult to show that &, and i, will satisfy (26) if ¢ and v

are solutions of the wave equations

. - L 2°° . 2 -
L

by =g W el (29)
cr

In the near-tip region, the stresses in the elastic unloading zone may be ex-

pressed in terms of 0 and ifby

1, g2 _ 36 . 3%
oo =2 2 4 (g2 gy BV
Vi "0,y 2 312 + (B.r 2) axl (31)

where we have used (8).

Let us now consider solutions of (28) and (29) of the general forms
é=Kv e, B =vw(t)e (32)

VeKv !7(8.1..6):?. By = V(t)/c,r (33)

Solutions of this kind follow immediately as a slight generalization of Equations

(22) and (23) of Achenbach and Bazant (1975) as

p/2 [A sinp(e - ®) + B cosp(e = 7)) (34)

é82,0) = @ - glsta’e)
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¥(82,0) = (1 ~ 82s102)P/? [C stno(w = m) + D cosp(w - M1 (35)
where
tanow = (1 - Bi)]'/2 tan# (36)
tan e = (1 - 35.)1/2 tanb 37
Defining
ﬁY =Rv ﬁ:l(e)rp-l . (38)

we find the following relations on the basis of (27) and (9-10)

ﬁ;l = p cosb & - sin0 &' + p 8ind ¥ + cos6 ¥' (39)
ﬁel e L] 0‘ - '
2 =P 8in® ¢ + cosd ¢' ~ p cos® ¥ + sino Y (40)

The governing equations for conditions of plane stress in the elastic region

can be obtained from the above by replacing A by u/(l ~ v).

Boundary Conditions

The governing equations in the plastic loading zome, (19) through (24),
and the general forms of the solutions in the elastic unloading zone, (34)
through (40), must be supplemented by boundary conditions at 6 = 0 and 6 = =,
and continuity conditions at 6 = Bp. By virtue of gsymmetry, the following con-

ditions hold at 6 = 0.

U,=0 (41)
I,=0 (42)
U ~0 (43)

Equations (30) and (31) together with the conditioms that % and 0,, vanish
at 6 = 5 yield the following relations
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(B% -2)pB-2p (1 ~ B:.)l/2 C=0 (44)

1/2

22 1- Y2 a4 g2 -2pD=0 (45)

Thus, the displacements and the stresses in the elastic unloading zome can be

expressed in terms of two unknown constants, say A and B.

Now, consider the conditions at 0 = ep. An obvious condition follows

by comparison of (7) and (38) as

s=p-~-1 (46)

Since 0 = Bp separates the plastic loading zone from the elastic unloading zone,

t'xe must vanish there, This implies that ie vanishes at 6 = Op;-i.e..

- ' =
8 Ie cosf + 2e giné = 0 (47)

.

Continuity of traction-rates across & = Gp requires that

[ie] = 0 and [iarl =0 (48)

Here the following notation has been used

4 [ ]=1im() - lim( )

6+087 e+0"
P p

(49)

Displacement-rates are also continuous at 6 = Op. Consequently,

(0.1 = [0,) = [0,] = [U,] = (50)

Since [6r] = 0, we have [f-:r] = 0. Then, since ie = 0 and [fe] = 0, it follows
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from (5) and (6) that [ir] = 0. This result, together with (48), implies
[616] = 0, From this it follows that [évsl = 0. Since the strain rates and

the displacement-rates are continuous, it follows from (11) through (13) that

["’il - [U3] =0 (51)

at 6 = 9§ .
P
Since explicit expressions for the fields in the elastic unloading
zone are available, the continuity conditions (50) and (51) can be used to
generate boundary conditions for the domain 0 < 6 5,ep. The two unknown con-
stants in the unloading zone, A and B, can be expressed in terms of ul(eé')
and ﬁz(ep') by the use of (49). Next, the quantities (ﬁ;l) and (ﬁ;l), which

are now in terms of ﬁl(ep'), ﬁz(ep'), s, 6 , B, and B, are computed and the

P
continuity conditions (50) imposed. This yields general relations of the forms

ﬁi(ap‘) - a,(s,0) 61(69‘) +2;,(5,0) 62(ep') (52)
65(epf) -8y (8,0) 61(99‘-) +8,,(s,9) 62(9;) (53)

The functions aYa(s,ep), wvhich also depend on BL and BT’ are rather lengthy, and

they are not reproduced here.

Numerical Solution

Equations (47), (52), and (53) provide a set of boundary conditions
for the domain 0 < 6 < GP. The governing equations for this domain are given
by (19) through (24). The boundary conditions at 6 = 0 are given by (41)
through (43). The unknowns are the functions depending on 6, such as ﬁl(e),

etc, as well as the values of Gp and s. The problem defined in this manner is
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like a nonlinear eigenvalue problem, similar to, but more complicated than

the one discussed for the anti-plane case by Achenbach and Kanninen (1978).

The problem must be solved numerically as discussed in this section.

When (16) is used to eliminate iij in (19) through (24) and (47),

the latter can be written in matrix form as
P(sij) b4 + 3 " 0 (54)

vhere
T

in which the superscript T denotes the transpose. The elements of the sym-

metric, square matrices p(sij) and R are given in the Appendix.

In preparation for integrating (54) numerically, it is convenient to

normalize the 6-variations by taking Ee(O) = ] and defining ;

q = 2;,(0)/2,,(0) (56)

The nonlinear two-point boundary value problem defined by (40) through
(43), (50) and (54) through (56) is solved by the shooting method. For pre-

scribed values of & and B and assumed values of s and q, (54) is numerically

integrated over @ > 0 until (47) is satisfied at a certain Sp. A check is made 1
to determine whether or not the continuity conditions, Equation (51), are satis-
flied for this 6_ . If not, Newton's method is used to establish new values of j

s and q and the procedure is repeated until (51) is satisfied.

A predictor-corrector method was used to integrate Equation (54).

1f Yy denotes the solution at & = i1A6, then Y44 at 6 = (i+1)A6 can be written

as . 2
Y41 " Zi + Zi A8+S A0"/2 (57)




]
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and

T sz tess . o

The coefficient vector ¢ is determined by numerical iterations; i.e., for an

assumed ¢ (57) is substituted into (54) to determine and a new estimate

Y441
for ¢ is found from (58). This procedure is repeated until Y441 agrees with

its previous iterant to six significant figures. Typically two iterations were
sufficient and the method proved to be stable for a as small as 0.005 whereas 3
the finite difference technique used by Achenbach and Kanninen (1978) was found
to be unstable for a < 0.1. To commence the numerical integration Yo and Z;
are required. These can be obtained by introducing Taylor series expansions
about 6 = 0 for D, R and y into (54) and equating coefficients of 00 and el to

zero. For the boundary conditioms (41) through (43) and condition (56), Yo and

y; are given in Appendix.
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RESULTS AND DISCUSSION

The numerical solution was checked by comparing it with the known
elastic solution and the quasi-static, linear strain-hardening solution of
Amazigo and Hutchinson (1977). For this comparison it is not possible to
consider numerically the limiting case 8 = 0 instead, 8 = 0.001 was used.
The computed values of s and ep were found to agree with Amazigo and
Hutchinson's values through four significant figures for all of the values
of a that they reported; i.e. from a = ,005 to 1.0.

For a given value of a, there exists a limiting crack speed above
vwhich the numerical integration algorithm failed to converge to a non-
positive value of 8. This occurred whenever the crack speed was greater
than the Rayleigh wave speed based upon the tangent modulus; i.e.
whenever

8>0.57al2, yva=o0.3 . (59)

where B is given by Equation (21).

; Numerical values of s and Op for the condition of plane stress are
given in Table 1 for selected values of a and 8 and for v = 0.3, Plots of 8
versus a appear in Figure 3. It is apparent from this figure that if the crack
speed is less than approximately onme-half of the Rayleigh wave speed based upon

the tangent modulus; i.e., if

8 <0.3a/2 (60)

the order of the stress and strain singularity does not differ significantly
from that for the quasi-static condition. The stress distributions in the

loading region for 8 = 0.25 and ¢ = 0.3 are shown in Figure 4. These may be 1
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compared with the quasi-static distributions for a = 0.3 depicted in Figure 5.
While the differences are not great, the largest difference occurs for zll'
Numerical values of s and eP are summarized in Table 2 and plots of
s versus a appear in Figure 6 for conditions of plane strain and v = 0.3. A
comparison of Figures 3 and 6 reveals that inertia effects have a more pro-
nounced influence upon the order of the singularity for plane strain than they
do for plane stress. The plane strain distribution of stresses in the loading
region are shown in Figures 7 and 8. Here differences between the quasi-static
distributions of Figure 7 and the dynamic counterparts of Figure 8 are more

perceptible. In both instances the high triaxiality in the loading region is

readily apparent.




CONCLUSIONS

A basis for the analysis of rapid crack propagation tsking direct
account of crack-tip flanticity has been provided in this work. Explicit

determination of the crack tip singularity and the angular position at which

unloading takes place has been made for both plane stress and plane strain con-
ditions. It wvas found that, in both conditions, the results are much more sen-
sitive to the ratio of the slopes of the two éortions of the bilinear stress-
strain relation used then to the crack speed. This indicates that, for a
singular finite element dynamic crack propagation solution procedure, only
modest adjustments in the crack tip element formulation will be necessary to

accommodate changes in the crack speed.
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A-1
APPENDIX
The nonzero elements of the symmetric matries D (sﬁ) and R for
plane strain are as follows. Note, for plane stress, the last column in B

and D (sij) and the last row in B, ¥s» Yoo @nd D (sij) are deleted.

2

Dy; =Dy " 87siné (A1)
Dy3 = D3y = Dp5 = D5, = siné (A2)
|
| Dy5 = D5y = Dyy = Dyy = = cosb (A3)
P~ -
s, .2 -
D 1+ _9-(1—-_21 -—]-'é_ siné (A4) 1
33 & 2
" e
| ’ t
‘ . 9(1 - a) 522
[ . D, 1+ e . 3 8iné (A5)
| L e
[ 91 - a) $122
Dgg = 20 + V) + 5 . 7| 81n6 (A6)
L e
i [ - 53 2 =
_ i ol - a) 533
Dee = |1+ 15 = 8in@ (A7)
L e
9(1 - o) 511 S22
Dy, = Dyy = - |v -3 7| it (AB) |
y e
i’ 5. 8
i - .91 -a) %11 512
: D35 = Dy5 Za C 2 s1n6 (A9)
e
; S S
- ep.=-|y-202-0a %u S
: D36 D63 v ™ . 3 sineé (A10)
L e
‘k D, =D =2(0=-0) S22 %12 0 (A1)
45 " Us4 2a ;2 0
) ) e
D,,=D,, =~ v-m‘ﬁlszzs” sine (A12)
46 = Y64 4o : 2




A-2

b ep =30-o 352
56 65 2a 22
e

.11 - 322 - . lecOle

llstksl-nzs-ksz--scose
Ris = Rg) = Ry = R,y = = s siné

R

- - - e !
33 " B4y = Bgg = ~ 5 <0890

=R l-“+v)coae

R 43'336"63'31.6"‘61."( s

34
R = - 8 [2(1+v) +§-Q'—;—°)-] cosd .

The values of y and y' at 6 = O are

T
y, = Ila, o, q, 1, o, g]

and

yc';r = I[o, b, 0, 0, ¢, o]

where

2 -1/2

I=(l+4q +82—q-qs-s)

a-(g+1)[12.aa+v]~-g-

b=s(g+q) [lz.ua-bv]-i-

c = -g (823 + q)

g-a(a+1)[-1—{:3+v] .

(A13)

(A14)
(A15)

{A16)

(A17)

(A18)

(A19)

(A20)

(A21)

(A22)

(A23)

(A24)

(A25)

(A26)




TABLE 1. PLANE STRESS RESULTS

a\8 0.1 0.25 0.40 0.5
]
1.0 -0.500 ~0.500 -0.500 -0.500
0.7 «0.460 ~0.457 -0.439
0.5 -0.419 -0.411 -0.371
0.3 ~0.355 ~0.339
002 -00306 "0- 282
0.1 -0- 232
)
P
1.0 1.408 1.496 1.706 0.750
0.7 1.426 1.516 1.712
0.5 1.425 1.517 1.719
0.3 1.401 1.498
0.2 1.370 1.475
0.1 1.304 "q




TABLE 2. PLANE STRAIN RESULTS

a\8 0.1 0.25 0.40 0.5
8

1.0 =-0.500 -0.500 -0.500 =0.500

0.7 =0.472 -0.468 =0.445

0.5 -0.440 -0.424% =-0.336

0.3 -0.369 -0.320

0.2 -0.292 -0.161

0.1 -0.180
G%

1.0 1.550 1.630 1.771 0.602

0.7 1.624 1.699 1.798

0.5 1.718 1.768 1.834

0.3 1.871 1.847

0.2 1.967 1.802

0.1 2.091
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FIGURE 1. CRACK TIP GEOMETRY
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FIGURE 2. BILINEAR STRESS-STRAIN CURVE




FIGURE 3. ORDER OF THE CRACK TIP SINGULARITY IN PLANE STRESS
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FIGURE 5. QUASI-STATIC CRACK TIP STRESSES IN PLANE STRESS
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FIGURE 6. ORDER OF THE CRACK TIP SINGULARITY IN PLANE STRAIN
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FIGURE 7. DYNAMIC CRACK TIP STRESSES IN PLANE STRAIN
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FIGURE 8. QUASI-STATIC CRACK TIP STRESSES IN PLANE STRAIN




